Intradermal NKT cell activation during DNA priming in heterologous prime-boost vaccination enhances T cell responses and protection against Leishmania.

在异源初免加强疫苗接种过程中,DNA 启动期间皮内 NKT 细胞活化可增强 T 细胞反应和对利什曼原虫的保护作用

阅读:4
作者:Dondji Blaise, Deak Eszter, Goldsmith-Pestana Karen, Perez-Jimenez Eva, Esteban Mariano, Miyake Sachiko, Yamamura Takashi, McMahon-Pratt Diane
Heterologous prime-boost vaccination employing DNA-vaccinia virus (VACV) modality using the Leishmania homologue of receptors for activated C kinase (LACK) (p36) antigen has been shown to elicit protective immunity against both murine cutaneous and visceral leishmaniasis. However, DNA priming is known to have limited efficacy; therefore in the current study the effect of NKT cell activation using alpha-galactosyl-ceramide (alphaGalCer) during intradermal DNAp36 priming was examined. Vaccinated mice receiving alphaGalCer + DNAp36 followed by a boost with VVp36 appeared to be resolving their lesions and had at ten- to 20-fold higher reductions in parasite burdens. NKT cell activation during alphaGalCer + DNAp36 priming resulted in higher numbers of antigen-reactive effector CD4(+) and CD8(+) T cells producing granzyme and IFN-gamma, with lower levels of IL-10. Although immunodepletion studies indicate that both CD4 and CD8 T cells provide protection in the vaccinated mice, the contribution of CD4(+) T cells was significantly increased in mice primed with DNAp36 together with alphaGalCer. Notably 5 months after boosting, mice vaccinated with DNAp36 + alphaGalCer continued to show sustained and heightened T cell immune responses. Thus, heterologous prime-boost vaccination using alphaGalCer during priming is highly protective against murine cutaneous leishmaniasis, resulting in the heightened activation and development of CD4 and CD8 T cells (effector and memory T cells).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。