Cellular senescence, traditionally associated with aging and chronic diseases, has recently been identified as a potential facilitator of tissue regeneration via a senescence-associated secretory phenotype (SASP). In rodents, the meniscus is known to regenerate spontaneously from the surrounding synovium, but the mechanism, and especially its relationship to cellular senescence, remains unclear. This study investigated the contribution of cellular senescence to spontaneous repair of the rat meniscus. We created a rat partial medial meniscectomy (pMx) model to evaluate time-course changes in regenerative tissue. Immunohistochemistry revealed marked increases in p16 expression and senescence-associated beta-galactosidase (SA-β-gal) activity in the regenerating tissue at the early phase after pMx surgery. RNA sequencing of regenerating tissues identified the upregulation of genes related to aging, extracellular matrix organization, and cell proliferation. Fluorescence staining identified high expression of SOX9, a master regulator of cartilage/meniscus development, adjacent to p16-positive cells. In vitro investigations of the effect of SASP factors on synovial fibroblasts (SFs) demonstrated that conditioned medium from senescent SFs stimulated the proliferation and chondrogenic differentiation of normal SFs. In vivo histological evaluation to determine whether selective elimination of senescent cells with a senolytic drug (ABT-263) retarded spontaneous repair of meniscus in vivo confirmed that ABT-263 decreased the meniscus score and expression of SOX9, aggrecan, and type 1 collagen. Our findings indicate that transient senescent cell accumulation and SASP in regenerating tissues beneficially contribute to spontaneous repair of the rat meniscus. Further research into the molecular mechanism will provide a novel strategy for meniscus regeneration based on cellular senescence.
Cellular senescence contributes to spontaneous repair of the rat meniscus.
细胞衰老有助于大鼠半月板的自发修复
阅读:3
作者:Aimono Yusuke, Endo Kentaro, Sekiya Ichiro
| 期刊: | Aging Cell | 影响因子: | 7.100 |
| 时间: | 2025 | 起止号: | 2025 Feb;24(2):e14385 |
| doi: | 10.1111/acel.14385 | 种属: | Rat |
| 研究方向: | 细胞生物学 | 信号通路: | Senescence |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
