Downregulation of PD-L1 expression by Wnt pathway inhibition to enhance PD-1 blockade efficacy in hepatocellular carcinoma.

通过抑制 Wnt 通路下调 PD-L1 表达,增强 PD-1 阻断疗法在肝细胞癌中的疗效

阅读:8
作者:Shao Yu-Yun, Wang Han-Yu, Hsu Hung-Wei, Wo Rita Robin, Cheng Ann-Lii, Hsu Chih-Hung
BACKGROUND: Immunotherapy targeting the programmed death-ligand 1 (PD-L1) pathway is a standard treatment for advanced hepatocellular carcinoma (HCC). The Wnt signaling pathway, often upregulated in HCC, contributes to an immunosuppressive tumor microenvironment. This study investigated the impact of Wnt pathway inhibition on PD-L1 expression in HCC and evaluated the potential therapeutic benefit of combining Wnt pathway inhibition with PD-L1 blockade. METHODS: The effects of Wnt pathway inhibitors XAV939 and IWR-1 on PD-L1 expression were examined in human HCC cell lines HuH7 and Hep3B. Beta-catenin overexpression and knockdown experiments confirmed these findings. For in vivo efficacy, the BNL 1ME A.7R.1 mouse HCC cell line was orthotopically implanted in mice, which were subsequently treated with XAV939, anti-PD-L1 antibodies, or both. RESULTS: Wnt pathway inhibitors XAV939 and IWR-1 significantly reduced PD-L1 protein expression in a dose-dependent manner in HuH7 and Hep3B cells, without affecting mRNA levels. CTNNB1 knockdown produced similar results, and beta-catenin overexpression reversed the effects of Wnt pathway inhibitors on PD-L1 expression. Wnt pathway inhibition did not promote PD-L1 protein degradation but instead increased the level of unphosphorylated 4EBP1, which could prevent the translation function of eIF-4E. In vivo, mice treated with a combination of XAV939 and an anti-PD-L1 antibody had significantly smaller tumors compared to those treated with either agent alone. The combination treatment also enhanced multiple immune-related pathways in harvested tumors. CONCLUSION: Inhibition of the Wnt pathway reduced PD-L1 expression in HCC cells and enhanced the efficacy of PD-L1 blockade, supporting its potential as HCC treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。