Budding yeast lacking the Sgs1 helicase and the Mus81/Mms4 endonuclease are inviable, and indirect studies implicate homologous recombination gone awry as the cause of death. We show that mutants lacking both enzymes have profound defects in meiotic recombination intermediate metabolism and crossover (CO) formation. Recombination intermediates (joint molecules, JMs) accumulate in these cells, many with structures that are infrequent in wild-type cells. These JMs persist, preventing nuclear division. Using an inducible expression system, we restored Mus81 or Sgs1 to sgs1 mus81 cells at a time when JMs are forming. Mus81 expression did not prevent JM formation but did restore JM resolution, CO formation, and nuclear division. In contrast, Sgs1 expression reduced the extent of JM accumulation. These results indicate that Sgs1 and Mus81/Mms4 collaborate to direct meiotic recombination toward interhomolog interactions that promote proper chromosome segregation, and also indicate that Mus81/Mms4 promotes JM resolution in vivo.
Mus81/Mms4 endonuclease and Sgs1 helicase collaborate to ensure proper recombination intermediate metabolism during meiosis.
Mus81/Mms4 核酸内切酶和 Sgs1 解旋酶协同作用,确保减数分裂过程中重组中间体的正常代谢
阅读:7
作者:Jessop Lea, Lichten Michael
| 期刊: | Molecular Cell | 影响因子: | 16.600 |
| 时间: | 2008 | 起止号: | 2008 Aug 8; 31(3):313-23 |
| doi: | 10.1016/j.molcel.2008.05.021 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
