INTRODUCTION: Spinal cord injury involves complex pathobiological mechanisms, necessitating a multidimensional approach for its cure. Previous studies have shown that α9-integrin expression and activation in mature dorsal root ganglion neurons enable the regeneration of injured axons within the spinal cord. However, tissue cavitation and fibrosis impede the regenerating axons from following their usual pathways, forcing them to seek alternative routes rich in tenascin-C, the primary ligand of the integrin. Fibrin gel, an FDA-approved and biocompatible material, can offer three-dimensional support for axonal extension through the cavitated area, thus preventing the formation of aberrant paths and connections that occur in the absence of a suitable scaffold. METHODS: The aim of this study was to investigate how combining α9-integrin expression by adeno-associated virus with the use of a fibrin gel as an extracellular microenvironment affects the growth of mature DRG neurites in vitro. Additionally, we sought to functionalize fibrin with integrin ligand peptides, specifically AEIDGIEL, the active domain of tenascin-C, to ensure α9-integrin activation. RESULTS: Our results indicate that fibrin gels are a suitable biomaterial for promoting neurite growth and that AEIDGIEL peptide effectively activates the integrin. Furthermore, we corroborate an autocrine signaling loop of α9-integrin and TN-C produced by neurons. DISCUSSION: the proposed combination therapy of α9-integrin and fibrin gel biomaterials incorporating AEIDGIEL peptide shows promise for addressing the complex challenges of spinal cord injury and promoting effective neural regeneration, laying the foundation for further in vivo research.
Combined strategy of α 9-integrin transduction and AEIDGIEL peptide-functionalized fibrin gel biomaterials to promote mature DRG neurite growth.
结合α9整合素转导和AEIDGIEL肽功能化纤维蛋白凝胶生物材料促进成熟DRG神经突生长的策略
阅读:4
作者:Cimpean Anda, Roll Lars, Reinhard Jacqueline, Kwok Jessica C F, Faissner Andreas, de Winter Fred, Fawcett James W, Jendelová Pavla
| 期刊: | Frontiers in Cellular Neuroscience | 影响因子: | 4.000 |
| 时间: | 2025 | 起止号: | 2025 Apr 1; 19:1568004 |
| doi: | 10.3389/fncel.2025.1568004 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
