Identification of novel PAD2 inhibitors using pharmacophore-based virtual screening, molecular docking, and MD simulation studies.

利用基于药效团的虚拟筛选、分子对接和 MD 模拟研究鉴定新型 PAD2 抑制剂

阅读:6
作者:Jha Prakash, Rajoria Prerna, Poonia Priya, Chopra Madhu
In the realm of epigenetic regulation, Protein arginine deiminase 2 (PAD2) stands out as a therapeutic target due to its significant role in neurological disorders, rheumatoid arthritis (RA), multiple sclerosis (MS), and various cancers. To date, no in silico studies have focused on PAD2 for lead compound identification. Therefore, we conducted structure-based pharmacophore modeling, virtual screening, molecular docking, molecular dynamics (MD) simulations, and essential dynamics studies using PCA and free energy landscape analyses to identify repurposed drugs and selective inhibitors against PAD2. The best pharmacophore model, 'Pharm_01,' had a selectivity score of 10.485 and an excellent ROC curve quality of 0.972. Pharm1 consisted of three hydrogen bond donors (HBD) and two hydrophobic (Hy) features (DDDHH). A virtual screening of about 9.2 million compounds yielded 2575 hits using a fit value threshold of 2.5 and drug-likeness criteria. Molecular docking identified the top ten molecules, which were verified using MD simulations. Stability was verified using MM-PBSA studies, whereas conformational differences were investigated using PCA and free energy landscape analyses. Two hits (Leads 1 and 2) from the DrugBank dataset showed promise for repurposing as PAD2 inhibitors, while one hit compound (Lead 8) from the ZINC database emerged as a novel PAD2 inhibitor. These findings indicate that the discovered compounds may be potent PAD2 inhibitors, necessitating additional preclinical and clinical research to produce viable treatments for cancer and neurological disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。