Total internal reflectance fluorescence (TIRF) microscopy is a technique that allows the study of events happening at the cell membrane, by selective imaging of fluorescent molecules that are closest to a high refractive index substance such as glass. In this article, we apply this technique to image exocytosis of synaptic vesicles in retinal bipolar cells isolated from the goldfish retina. These neurons are very suitable for this kind of study due to their large axon terminals. By simultaneously patch clamping the bipolar cells, it is possible to investigate the relationship between pre-synaptic voltage and synaptic release. Synaptic vesicles inside the bipolar cell terminals are loaded with a fluorescent dye (FM 1-43) by co-puffing the dye and a ringer solution containing a high K(+) concentration onto the synaptic terminals. This depolarizes the cells and stimulates endocytosis and consequent dye uptake into the glutamatergic vesicles. After washing the excess dye away for around 30 minutes, cells are ready for being patch clamped and imaged simultaneously with a 488 nm laser. The patch pipette solution contains a rhodamine-based peptide that binds selectively to the synaptic ribbon protein RIBEYE, thereby labeling ribbons specifically when terminals are imaged with a 561 nm laser. This allows the precise localization of active zones and the separation of synaptic from extra-synaptic events.
Imaging exocytosis in retinal bipolar cells with TIRF microscopy.
利用 TIRF 显微镜对视网膜双极细胞胞吐作用进行成像
阅读:4
作者:Joselevitch Christina, Zenisek David
| 期刊: | Jove-Journal of Visualized Experiments | 影响因子: | 1.000 |
| 时间: | 2009 | 起止号: | 2009 Jun 9; (28):1305 |
| doi: | 10.3791/1305 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
