Nucleotides are essential for nucleic acid synthesis, signaling, and metabolism, and can be synthesized de novo or through salvage. Rapidly proliferating cells require large amounts of nucleotides, making nucleotide metabolism a widely exploited target for cancer therapy. However, resistance frequently emerges, highlighting the need for a deeper understanding of nucleotide regulation. Here, we harness uridine salvage and CRISPR-Cas9 screening to reveal regulators of de novo pyrimidine synthesis. We identify several factors and report that pyrimidine synthesis can continue in the absence of coenzyme Q (CoQ), the canonical electron acceptor in de novo synthesis. We further investigate NUDT5 and report its conserved interaction with PPAT, the rate-limiting enzyme in purine synthesis. We show that in the absence of NUDT5, hyperactive purine synthesis siphons the phosphoribosyl pyrophosphate (PRPP) pool at the expense of pyrimidine synthesis, promoting resistance to chemotherapy. Intriguingly, the interaction between NUDT5 and PPAT appears to be disrupted by PRPP, highlighting intricate allosteric regulation. Our findings reveal a fundamental mechanism for maintaining nucleotide balance and position NUDT5 as a potential biomarker for predicting resistance to chemotherapy.
Uridine-sensitized screening identifies genes and metabolic regulators of nucleotide synthesis.
尿苷敏感筛选可识别核苷酸合成的基因和代谢调节因子
阅读:5
作者:Strefeler Abigail, Baker Zakery N, Chollet Sylvain, Guerra Rachel M, Ivanisevic Julijana, Gallart-Ayala Hector, Pagliarini David J, Jourdain Alexis A
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Mar 13 |
| doi: | 10.1101/2025.03.11.642569 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
