Chronic myeloid leukemia (CML) is primarily driven by the BCR::ABL1 oncoprotein, which has potent tyrosine kinase activity. BCR::ABL1 has been shown to facilitate several metabolic processes, including glycolysis, lipid synthesis, and protein synthesis in vitro. However, the altered metabolic profile in vivo remains poorly understood. Using Scl/tTA-BCR::ABL1 mice as a model, we conducted an analysis of plasma metabolites at different stages following BCR::ABL1 induction. Metabolites involved in sphingolipid and thiamine metabolism were significantly altered at the early stage of CML, while the tricarboxylic acid (TCA) cycle metabolites were altered during disease progression. Among these metabolic changes, sphingolipid metabolism is of particular significance. Inhibition of sphingolipid metabolism had a more pronounced effect on the growth and survival fate of K562 cells compared to thiamine metabolism inhibition. Furthermore, knockdown of sphingosine kinase 1 (SPHK1) resulted in extensive metabolic remodeling, affecting lipid, energy, and heme metabolism. Pharmacological targeting of sphingolipid metabolism appeared to attenuate the development of CML. Our study also demonstrated that BCR::ABL1 triggers ERK-dependent phosphorylation of SphK1, leading to aberrant activation of sphingolipid metabolism, which in turn has a positive feedback effect on BCR/ABL expression. These findings highlight the dominant role of sphingolipid metabolism in BCR::ABL1-induced metabolic reprogramming in CML.
Dysregulation of sphingolipid metabolism contributes to the pathogenesis of chronic myeloid leukemia.
鞘脂代谢失调是慢性粒细胞白血病发病机制中的一个因素
阅读:4
作者:Xie Yinyin, Zeng Qinghua, Chen Zhiwei, Song Jiachun, Wang Fuhui, Liu Dan, Sun Xiaojian, Zhang Yuanliang, Huang Qiuhua
| 期刊: | Cell Death & Disease | 影响因子: | 9.600 |
| 时间: | 2025 | 起止号: | 2025 Apr 13; 16(1):282 |
| doi: | 10.1038/s41419-025-07594-0 | 研究方向: | 代谢、细胞生物学 |
| 疾病类型: | 白血病 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
