Mn superoxide dismutase (MnSOD) is an important mitochondrial antioxidant enzyme, and elevated MnSOD levels have been shown to reduce tumor growth in part by suppressing cell proliferation. Studies with fibroblasts have shown that increased MnSOD expression prolongs cell cycle transition time in G1/S and favors entrance into the quiescent state. To determine if the same effect occurs during tissue regeneration in vivo, we used a transgenic mouse system with liver-specific MnSOD expression and a partial hepatectomy paradigm to induce synchronized in vivo cell proliferation during liver regeneration. We show in this experimental system that a 2.6-fold increase in MnSOD activity leads to delayed entry into S phase, as measured by reduction in bromodeoxyuridine (BrdU) incorporation and decreased expression of proliferative cell nuclear antigen (PCNA). Thus, compared to control mice with baseline MnSOD levels, transgenic mice with increased MnSOD expression in the liver have 23% fewer BrdU-positive cells and a marked attenuation of PCNA expression. The increase in MnSOD activity also leads to an increase in the mitochondrial form of thioredoxin (thioredoxin 2), but not in several other peroxidases examined, suggesting the importance of thioredoxin 2 in maintaining redox balance in mitochondria with elevated levels of MnSOD.
Enhanced expression of mitochondrial superoxide dismutase leads to prolonged in vivo cell cycle progression and up-regulation of mitochondrial thioredoxin.
线粒体超氧化物歧化酶表达增强导致体内细胞周期进程延长和线粒体硫氧还蛋白上调
阅读:4
作者:Kim Aekyong, Joseph Suman, Khan Aslam, Epstein Charles J, Sobel Raymond, Huang Ting-Ting
| 期刊: | Free Radical Biology and Medicine | 影响因子: | 8.200 |
| 时间: | 2010 | 起止号: | 2010 Jun 1; 48(11):1501-12 |
| doi: | 10.1016/j.freeradbiomed.2010.02.028 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
