USP9X integrates TGF-β and hypoxia signalings to promote ovarian cancer chemoresistance via HIF-2α-maintained stemness.

USP9X整合TGF-β和缺氧信号,通过HIF-2α维持干性来促进卵巢癌的化疗耐药性

阅读:4
作者:Zhang Zhenlei, Yu Xiujie, Wen Liqi, Wang Jia'nan, Li Zhufeng, Zhang Yu, Cheng Jiayu, Kan Ronglin, Zhang Wanting, Shen Yan, Yuan Shukai, Zhao Li
Widespread intraperitoneal metastases and chemoresistance render ovarian cancer the leading cause of gynecological malignancy-related deaths, wherein TGF-β signaling plays the pivotal role by promoting cancer stem cells (CSCs) activity. The activation mechanism and key protumorigeneic events downstream of TGF-β signaling remain incompletely understood. Here, we identify hypoxic tumor microenvironment as an initiator of TGF-β signaling to promote HIF-2α positive CSC-mediated chemoresistance in high-grade serous ovarian cancer (HGSOC). Mechanistically, deubiquitinase USP9X, as a TGF-β downstream effector, stabilizes HIF-2ɑ in a hydroxylation- and ubiquitylation-dependent manner, thus promoting stemness reprogramming. Hypoxia and TGF-β signals converge on USP9X-HIF-2ɑ axis via multi-level regulations, which in turn facilitates Smad/HIF responses. Clinically, USP9X expression correlates with TGF-β signatures, CSCs characteristics, EMT behaviors, and chemotherapy responsiveness, along with HIF-2ɑ. Antagonizing USP9X efficiently represses tumor formation, metastasis, CSCs occurrence, while increasing chemosensitivity in orthotopic tumors, patient-derived xenograft (PDX), organoid, and chemoresistant cell models, in part via restricting TGF-β and hypoxia activities. This study deciphers the critical role of hypoxic niche in stimulating TGF-β signaling, and a downstream USP9X-HIF-2ɑ proteostatic regulatory axis in priming the HGSOC stemness, thereby provides novel targeting venues to counteract TGF-β signaling in CSCs and meliorate clinical chemoresistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。