Transfer learning reveals sequence determinants of the quantitative response to transcription factor dosage.

迁移学习揭示了转录因子剂量定量反应的序列决定因素

阅读:6
作者:Naqvi Sahin, Kim Seungsoo, Tabatabaee Saman, Pampari Anusri, Kundaje Anshul, Pritchard Jonathan K, Wysocka Joanna
Deep learning models have advanced our ability to predict cell-type-specific chromatin patterns from transcription factor (TF) binding motifs, but their application to perturbed contexts remains limited. We applied transfer learning to predict how concentrations of the dosage-sensitive TFs TWIST1 and SOX9 affect regulatory element (RE) chromatin accessibility in facial progenitor cells, achieving near-experimental accuracy. High-affinity motifs that allow for heterotypic TF co-binding and are concentrated at the center of REs buffer against quantitative changes in TF dosage and predict unperturbed accessibility. Conversely, low-affinity or homotypic binding motifs distributed throughout REs drive sensitive responses with minimal impact on unperturbed accessibility. Both buffering and sensitizing features display purifying selection signatures. We validated these sequence features through reporter assays and demonstrated that TF-nucleosome competition can explain low-affinity motifs' sensitizing effects. This combination of transfer learning and quantitative chromatin response measurements provides a novel approach for uncovering additional layers of the cis-regulatory code.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。