Metabolic rewiring caused by mitochondrial dysfunction promotes mTORC1-dependent skeletal aging.

线粒体功能障碍引起的代谢重编程会促进 mTORC1 依赖性骨骼衰老

阅读:8
作者:Bubb Kristina, Etich Julia, Probst Kristina, Parashar Tanvi, Schuetter Maximilian, Dethloff Frederik, Reincke Susanna, Nolte Janica L, Krüger Marcus, Schlötzer-Schrehard Ursula, Nüchel Julian, Demetriades Constantinos, Giavalisco Patrick, Riemer Jan, Brachvogel Bent
Decline of mitochondrial respiratory chain (mtRC) capacity is a hallmark of mitochondrial diseases. Patients with mtRC dysfunction often present reduced skeletal growth as a sign of premature cartilage degeneration and aging, but how metabolic adaptations contribute to this phenotype is poorly understood. Here we show that, in mice with impaired mtRC in cartilage, reductive/reverse TCA cycle segments are activated to produce metabolite-derived amino acids and stimulate biosynthesis processes by mechanistic target of rapamycin complex 1 (mTORC1) activation during a period of massive skeletal growth and biomass production. However, chronic hyperactivation of mTORC1 suppresses autophagy-mediated organelle recycling and disturbs extracellular matrix secretion to trigger chondrocytes death, which is ameliorated by targeting the reductive metabolism. These findings explain how a primarily beneficial metabolic adaptation response required to counterbalance the loss of mtRC function, eventually translates into profound cell death and cartilage tissue degeneration. The knowledge of these dysregulated key nutrient signaling pathways can be used to target skeletal aging in mitochondrial disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。