Skeletal muscle is a complex tissue comprising multinucleated and post-mitotic cells (i.e., myofibers). Given this, skeletal muscle must maintain a fine balance between growth and degradative signals. A major system regulating the remodeling of skeletal muscle is autophagy, where cellular quality control is mediated by the degradation of damaged cellular components. The accumulation of damaged cellular material can result in elevated apoptotic signaling, which is particularly relevant in skeletal muscle given its post-mitotic nature. Luckily, skeletal muscle possesses the unique ability to regenerate in response to injury. It is unknown whether a relationship between autophagy and apoptotic signaling exists in injured skeletal muscle and how autophagy deficiency influences myofiber apoptosis and regeneration. In the present study, we demonstrate that an initial inducible muscle-specific autophagy deficiency does not alter apoptotic signaling following cardiotoxin injury. This finding is presumably due to the re-establishment of ATG7 levels following injury, which may be attributed to the contribution of a functional Atg7 gene from satellite cells. Furthermore, the re-expression of ATG7 resulted in virtually identical regenerative potential. Overall, our data demonstrate that catastrophic injury may "reset" muscle gene expression via the incorporation of nuclei from satellite cells.
Degradative Signaling in ATG7-Deficient Skeletal Muscle Following Cardiotoxin Injury.
心脏毒素损伤后 ATG7 缺陷骨骼肌中的降解信号传导
阅读:8
作者:Rahman Fasih Ahmad, Campbell Troy, Bloemberg Darin, Chapman Sarah, Quadrilatero Joe
| 期刊: | Muscles | 影响因子: | 0.000 |
| 时间: | 2023 | 起止号: | 2023 Sep 15; 2(3):299-316 |
| doi: | 10.3390/muscles2030023 | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
