Melanin overproduction contributes to hyperpigmentation disorders such as melasma and solar lentigines, leading to increasing demand for safe and effective skin-lightening agents. D-cycloserine (DCS), a known antimicrobial agent, has not been previously evaluated for dermatological applications. This study aimed to explore the potential of DCS as a novel anti-melanogenic compound and to elucidate its underlying molecular mechanisms in melanogenesis inhibition. The cytotoxicity and anti-melanogenic effects of DCS were assessed in B16F10 melanoma cells stimulated with α-MSH. Cell viability was determined via MTT assays, while melanin content, tyrosinase activity, and the expression levels of MITF, TYR, TRP-1, TRP-2, and major signaling proteins (e.g., CREB, MAPKs, GSK-3β/β-catenin) were evaluated using colorimetric assays and Western blotting. A 3D human skin model was also used to confirm in vitro findings, and a primary skin irritation test was conducted to assess dermal safety. DCS significantly reduced α-MSH-induced melanin content and tyrosinase activity without cytotoxicity at concentrations â¤100 µM. It downregulated MITF and melanogenic enzyme expression and modulated signaling pathways by enhancing ERK activation while inhibiting CREB, JNK, and p38 phosphorylation. Additionally, DCS suppressed β-catenin stabilization via GSK-3β activation. These effects were confirmed in a 3D human skin model, and a clinical skin irritation study revealed no adverse reactions in human volunteers. DCS exerts its anti-melanogenic effect by targeting multiple pathways, including CREB/MITF, MAPK, and GSK-3β/β-catenin signaling. Its efficacy and safety profiles support its potential as a novel cosmeceutical agent for the treatment of hyperpigmentation. Further clinical studies are warranted to confirm its therapeutic utility in human skin pigmentation disorders.
Repurposing the Antibiotic D-Cycloserine for the Treatment of Hyperpigmentation: Therapeutic Potential and Mechanistic Insights.
将抗生素 D-环丝氨酸重新用于治疗色素沉着过度:治疗潜力和机制见解
阅读:3
作者:Lee Ye-Jin, Hyun Chang-Gu
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Aug 10; 26(16):7721 |
| doi: | 10.3390/ijms26167721 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
