Parallel multiOMIC analysis reveals glutamine deprivation enhances directed differentiation of renal organoids.

平行多组学分析表明,谷氨酰胺缺乏可增强肾脏类器官的定向分化

阅读:6
作者:Sarami Iman, Hekman Katherine E, Gupta Ashwani Kumar, Snider Justin M, Ivancic David, Zec Manja, Kandpal Manoj, Ben-Sahra Issam, Menon Rajasree, Otto Edgar A, Chilton Floyd H, Wertheim Jason A
Metabolic pathways play a critical role in driving differentiation but remain poorly understood in the development of kidney organoids. In this study, parallel metabolite and transcriptome profiling of differentiating human pluripotent stem cells (hPSCs) to multicellular renal organoids revealed key metabolic drivers of the differentiation process. In the early stage, transitioning from hPSCs to nephron progenitor cells (NPCs), both the glutamine and the alanine-aspartate-glutamate pathways changed significantly, as detected by enrichment and pathway impact analyses. Intriguingly, hPSCs maintained their ability to generate NPCs, even when deprived of both glutamine and glutamate. Surprisingly, single cell RNA-Seq analysis detected enhanced maturation and enrichment for podocytes under glutamine-deprived conditions. Together, these findings illustrate a novel role of glutamine metabolism in regulating podocyte development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。