BACKGROUND: Osteoporosis, a common bone disorder, is primarily managed pharmacologically. However, existing medications are associated with non-trivial side-effects. Sildenafil, which already finds many clinical applications, promotes angiogenesis and cellular differentiation. Osteoporotic patients often exhibit a reduced intraosseous vasculature and impaired cellular differentiation; sildenafil may thus usefully treat osteoporosis. METHODS: Here, the effects of sildenafil on the osteogenic differentiation of human mesenchymal stem cells (hMSCs) were explored, as were the molecular mechanisms in play. We treated hMSCs with varying concentrations of sildenafil and measured cell proliferation and osteogenic differentiation in vitro. We used a mouse model of subcutaneous ectopic osteogenesis to assess sildenafil's effect on hMSC osteogenic differentiation in vivo. We also explored the effects of sildenafil on bone loss in tail-suspended (TS) and ovariectomized (OVX) mice. Mechanistically, we employed RNA-sequencing to define potentially relevant molecular pathways. RESULTS: The appropriate concentrations of sildenafil significantly enhanced osteogenic hMSC differentiation; the optimal sildenafil concentration may be 10 mg/L. Sildenafil mitigated osteoporosis in OVX and TS mice. The appropriate concentrations of sildenafil probably promoted hMSC osteogenic differentiation by acting on the transforming growth factor-β (TGF-β) signaling pathway. CONCLUSIONS: In conclusion, sildenafil enhanced hMSC osteogenic differentiation and inhibited bone loss. Sildenafil may usefully treat osteoporosis. Our findings offer new insights into the physiological effects of the medicine.
Sildenafil promotes osteogenic differentiation of human mesenchymal stem cells and inhibits bone loss by affecting the TGF-β signaling pathway.
西地那非通过影响 TGF-β 信号通路促进人类间充质干细胞的成骨分化并抑制骨质流失
阅读:4
作者:Hu Menglong, Wu Likun, Wei Erfan, Pan Xingtong, Zhu Qiyue, Xiuyun Xv, Lv Letian, Dong Xinyi, Liu Hao, Liu Yunsong
| 期刊: | Stem Cell Research & Therapy | 影响因子: | 7.300 |
| 时间: | 2025 | 起止号: | 2025 Apr 23; 16(1):201 |
| doi: | 10.1186/s13287-025-04320-7 | 种属: | Human |
| 研究方向: | 信号转导、发育与干细胞、细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
