Streamlined computational pipeline for genetic background characterization of genetically engineered mice based on next generation sequencing data

基于下一代测序数据的转基因小鼠遗传背景表征的简化计算流程

阅读:8
作者:C Farkas, F Fuentes-Villalobos, B Rebolledo-Jaramillo, F Benavides, A F Castro, R Pincheira

Background

Genetically engineered mice (GEM) are essential tools for understanding gene function and disease modeling. Historically, gene targeting was first done in embryonic stem cells (ESCs) derived from the 129 family of inbred strains, leading to a mixed background or congenic mice when crossed with C57BL/6 mice. Depending on the number of backcrosses and breeding strategies, genomic segments from 129-derived ESCs can be introgressed into the C57BL/6 genome, establishing a unique genetic makeup that needs characterization in order to obtain valid conclusions from experiments using GEM lines. Currently, SNP genotyping is used to detect the extent of 129-derived ESC genome introgression into C57BL/6 recipients; however, it fails to detect novel/rare variants.

Conclusions

We revealed the impact of the 129-derived ESC genome introgression on gene expression, predicted potential modifier genes, and identified potential phenotypic interference in KO lines. Our results demonstrate that our new approach is an effective method to determine genetic introgression of GEM.

Results

Here, we present a computational pipeline implemented in the Galaxy platform and in BASH/R script to determine genetic introgression of GEM using next generation sequencing data (NGS), such as whole genome sequencing (WGS), whole exome sequencing (WES) and RNA-Seq. The pipeline includes strategies to uncover variants linked to a targeted locus, genome-wide variant visualization, and the identification of potential modifier genes. Although these methods apply to congenic mice, they can also be used to describe variants fixed by genetic drift. As a proof of principle, we analyzed publicly available RNA-Seq data from five congenic knockout (KO) lines and our own RNA-Seq data from the Sall2 KO line. Additionally, we performed target validation using several genetics approaches. Conclusions: We revealed the impact of the 129-derived ESC genome introgression on gene expression, predicted potential modifier genes, and identified potential phenotypic interference in KO lines. Our results demonstrate that our new approach is an effective method to determine genetic introgression of GEM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。