Genetic Variants of the Human Thiamine Transporter (SLC19A3, THTR2)-Potential Relevance in Metabolic Diseases.

人类硫胺素转运蛋白(SLC19A3,THTR2)的遗传变异——与代谢疾病的潜在相关性

阅读:8
作者:Szabó Edit, Pálinkás Márton, Bohár Balázs, Literáti-Nagy Botond, Korányi László, Poór Gyula, Várady György, Sarkadi Balázs
Thiamine, crucial for energy metabolism, is associated with various human diseases when deficient. We studied how variations in the SLC19A3 gene, encoding THTR2, a thiamine transporter, may influence type 2 diabetes (T2DM) and gout (arthritis urica, AU). We characterized the SLC19A3 gene variants using bioinformatics and analyzed DNA samples from controls, T2DM, and gout patients to explore associations with physical/laboratory parameters. In human cells, we used a luciferase reporter assay to assess how these variants affect gene expression. We examined four large haplotypes (H1-4) in this gene, identified lead SNPs for the minor variants (MV), and explored potential transcription factor binding sites. We found that in T2DM patients, H3-MV correlated significantly with impaired glucose metabolism (pHOMA = 0.0189, pHbA1c% = 0.0102), while H4-MV correlated with altered uric acid (p = 0.0008) and white blood cell levels (p = 0.0272). In AU patients, H3-MV correlated with increased basophil granulocyte levels (p = 0.0273). In model cell lines, H3-MV presence increased gene expression (p = 0.0351), influencing responses to thiamine depletion and metformin (p = 0.0016). Although H4-MV did not directly affect luciferase expression, thiamine and fedratinib co-treatment significantly enhanced gene expression in thiamine-depleted cells (p = 0.04854). Our results suggest a connection between selected SLC19A3 variants and the severity of metabolic diseases or their response to treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。