Thiamine, crucial for energy metabolism, is associated with various human diseases when deficient. We studied how variations in the SLC19A3 gene, encoding THTR2, a thiamine transporter, may influence type 2 diabetes (T2DM) and gout (arthritis urica, AU). We characterized the SLC19A3 gene variants using bioinformatics and analyzed DNA samples from controls, T2DM, and gout patients to explore associations with physical/laboratory parameters. In human cells, we used a luciferase reporter assay to assess how these variants affect gene expression. We examined four large haplotypes (H1-4) in this gene, identified lead SNPs for the minor variants (MV), and explored potential transcription factor binding sites. We found that in T2DM patients, H3-MV correlated significantly with impaired glucose metabolism (pHOMA = 0.0189, pHbA1c% = 0.0102), while H4-MV correlated with altered uric acid (p = 0.0008) and white blood cell levels (p = 0.0272). In AU patients, H3-MV correlated with increased basophil granulocyte levels (p = 0.0273). In model cell lines, H3-MV presence increased gene expression (p = 0.0351), influencing responses to thiamine depletion and metformin (p = 0.0016). Although H4-MV did not directly affect luciferase expression, thiamine and fedratinib co-treatment significantly enhanced gene expression in thiamine-depleted cells (p = 0.04854). Our results suggest a connection between selected SLC19A3 variants and the severity of metabolic diseases or their response to treatment.
Genetic Variants of the Human Thiamine Transporter (SLC19A3, THTR2)-Potential Relevance in Metabolic Diseases.
人类硫胺素转运蛋白(SLC19A3,THTR2)的遗传变异——与代谢疾病的潜在相关性
阅读:8
作者:Szabó Edit, Pálinkás Márton, Bohár Balázs, Literáti-Nagy Botond, Korányi László, Poór Gyula, Várady György, Sarkadi Balázs
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Mar 25; 26(7):2972 |
| doi: | 10.3390/ijms26072972 | 种属: | Human |
| 研究方向: | 代谢 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
