Ume6-dependent pathways of morphogenesis and biofilm formation in Candida auris.

耳念珠菌中 Ume6 依赖的形态发生和生物膜形成途径

阅读:8
作者:Louvet Marine, Li Jizhou, Brandalise Danielle, Bachmann Daniel, Sala de Oyanguren Francisco, Labes Danny, Jacquier Nicolas, Genoud Christel, Mucciolo Antonio, Coste Alix T, Sanglard Dominique, Lamoth Frederic
Candida auris is a yeast pathogen causing nosocomial outbreaks of candidemia. Its ability to adhere to inert surfaces and to be transmitted from one patient to another via medical devices is of particular concern. Like other Candida spp., C. auris has the ability to transition from the yeast form to pseudohyphae and to build biofilms. Moreover, some isolates have a unique capacity to form aggregates. These morphogenetic changes may impact virulence. In this study, we demonstrated the role of the transcription factor Ume6 in C. auris morphogenesis. Genetic hyperactivation of Ume6 induced filamentation and aggregation. The Ume6-hyperactivated strain (UME6(HA)) also exhibited increased adhesion to inert surface and formed biofilms of higher biomass compared to the parental strain. Transcriptomic analyses of UME6(HA) revealed enrichment of genes encoding for adhesins, proteins involved in cell wall organization, sterol biosynthesis, and aspartic protease activities. The three most upregulated genes compared to wild-type were those encoding for the agglutin-like sequence adhesin Als4498, the C. auris-specific adhesin Scf1, and the hypha-specific G1 cyclin-related protein Hgc1. The deletion of these genes in the UME6(HA) background showed that Ume6 controls filamentation via Hgc1 and aggregation via Als4498 and Scf1. Adhesion to inert surface was essentially triggered by Scf1. However, Als4498 and Hgc1 were also crucial for biofilm formation. Our data show that Ume6 is a universal regulator of C. auris morphogenesis via distinct modulators.IMPORTANCEC. auris represents a public health threat because of its ability to cause difficult-to-treat infections and hospital outbreaks. The morphogenetic plasticity of C. auris, including its ability to filament, to form aggregates or biofilms on inert surfaces, is important to the fungus for interhuman transmission, skin or catheter colonization, tissue invasion, antifungal resistance, and escape of the host immune system. This work deciphered the importance of Ume6 in the control of distinct pathways involved in filamentation, aggregation, adhesion, and biofilm formation of C. auris. A better understanding of the mechanisms of C. auris morphogenesis may help identify novel antifungal targets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。