Human induced Pluripotent Stem Cell-derived cardiomyocytes (hiPSC-CMs) are increasingly used to identify potential factors capable of inducing endogenous cardiomyocyte proliferation to regenerate the injured heart. L-type calcium channel blockers have previously been identified as a class of factors capable of inducing matured hiPSC-CMs to proliferate. However, the mechanism by which L-type calcium channel blockers promote hiPSC-CM proliferation remains unclear. Here we provide evidence that matured hiPSC-CMs possess plasticity to undergo dematuration in response to certain pharmacological compounds. Consistent with primary cardiomyocyte maturation during perinatal development, we found that centrosome disassembly occurs in hiPSC-CMs during plate-based, temporal, maturation. A small molecule screen identified nitrendipine, an L-type calcium channel blocker, and 1-NA-PP1, a Src kinase inhibitor, as factors capable of inducing centrosome reassembly in a subpopulation of hiPSC-CMs. Furthermore, centrosome-positive hiPSC-CMs were more likely to exhibit cell cycle activity than centrosome-negative hiPSC-CMs. In contrast, neither nitrendipine or 1-NA-PP1 induced centrosome reassembly, or cell cycle activity, in neonatal rat ventricular myocytes (NRVMs). Differential bulk transcriptome analysis indicated that matured hiPSC-CMs, but not NRVMs, treated with nitrendipine or 1-NA-PP1 undergo dematuration. ScRNA transcriptome analysis supported that matured hiPSC-CMs treated with either nitrendipine or 1-NA-PP1 undergo dematuration. Collectively, our results indicate that matured hiPSC-CMs, but not primary NRVMs, possess plasticity to undergo dematuration in response to certain pharmacological compounds such as L-type calcium channel blockers and Src-kinase inhibitors. This study shows that once mature, hiPSC-CMs may not maintain their maturity under experimental conditions which may have implications for experimental systems where the state of hiPSC-CM maturation is relevant.
Matured hiPSC-derived cardiomyocytes possess dematuration plasticity.
成熟的hiPSC衍生心肌细胞具有去成熟可塑性
阅读:6
作者:Meng Fang, Kwok Maxwell, Hui Yen Chin, Wei Ruofan, Hidalgo-Gonzalez Alejandro, Walentinsson Anna, Andersson Henrik, Bjerre Frederik Adam, Wang Qing-Dong, Andersen Ditte C, Poon Ellen Ngar-Yun, Später Daniela, Zebrowski David C
| 期刊: | Journal of Molecular and Cellular Cardiology Plus | 影响因子: | 2.200 |
| 时间: | 2025 | 起止号: | 2025 Mar 28; 12:100295 |
| doi: | 10.1016/j.jmccpl.2025.100295 | 研究方向: | 细胞生物学 |
| 疾病类型: | 心肌炎 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
