The cryo-EM structure of trypanosome 3-methylcrotonyl-CoA carboxylase provides mechanistic and dynamic insights into its enzymatic function.

锥虫 3-甲基巴豆酰辅酶A羧化酶的冷冻电镜结构提供了对其酶功能的机制和动态见解

阅读:5
作者:Plaza-Pegueroles Adrián, Aphasizheva Inna, Aphasizhev Ruslan, Fernández-Tornero Carlos, Ruiz Federico M
3-Methylcrotonyl-CoA carboxylase (MCC) catalyzes the two-step, biotin-dependent production of 3-methylglutaconyl-CoA, an essential intermediate in leucine catabolism. Given the critical metabolic role of MCC, deficiencies in this enzyme lead to organic aciduria, while its overexpression is linked to tumor development. MCC is a dodecameric enzyme composed of six copies of each α- and β-subunit. We present the cryo-EM structure of the endogenous MCC holoenzyme from Trypanosoma brucei in a non-filamentous state at 2.4 à resolution. Biotin is covalently bound to the biotin carboxyl carrier protein domain of α-subunits and positioned in a non-canonical pocket near the active site of neighboring β-subunit dimers. Moreover, flexibility of key residues at α-subunit interfaces and loops enables pivoting of α-subunit trimers to partly reduce the distance between α- and β-subunit active sites, required for MCC catalysis. Our results provide a structural framework to understand the enzymatic mechanism of eukaryotic MCCs and to assist drug discovery against trypanosome infections.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。