An open access, machine learning pipeline for high-throughput quantification of cell morphology.

一种用于高通量定量分析细胞形态的开放获取机器学习流程

阅读:7
作者:Welter Emma M, Kosyk Oksana, Zannas Anthony S
Cell morphology is influenced by many factors and can be used as a phenotypic marker. Here we describe a machine-learning-based protocol for high-throughput morphological measurement of human fibroblasts using a standard fluorescence microscope and the pre-existing, open access software ilastik for cell body identification, ImageJ/Fiji for image overlay, and CellProfiler for morphological quantification. Because this protocol overlays nuclei with their cell bodies and relies on coloration differences, it can be broadly applied to other cell types beyond fibroblasts. For details on the use and execution of this protocol, please also refer to Leung et al. (2022).(1).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。