Cell morphology is influenced by many factors and can be used as a phenotypic marker. Here we describe a machine-learning-based protocol for high-throughput morphological measurement of human fibroblasts using a standard fluorescence microscope and the pre-existing, open access software ilastik for cell body identification, ImageJ/Fiji for image overlay, and CellProfiler for morphological quantification. Because this protocol overlays nuclei with their cell bodies and relies on coloration differences, it can be broadly applied to other cell types beyond fibroblasts. For details on the use and execution of this protocol, please also refer to Leung et al. (2022).(1).
An open access, machine learning pipeline for high-throughput quantification of cell morphology.
一种用于高通量定量分析细胞形态的开放获取机器学习流程
阅读:3
作者:Welter Emma M, Kosyk Oksana, Zannas Anthony S
| 期刊: | STAR Protocols | 影响因子: | 1.300 |
| 时间: | 2023 | 起止号: | 2023 Mar 17; 4(1):101947 |
| doi: | 10.1016/j.xpro.2022.101947 | 研究方向: | 细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
