The molecular basis of neural crest axial identity.

神经嵴轴向身份的分子基础

阅读:4
作者:Rothstein Megan, Bhattacharya Debadrita, Simoes-Costa Marcos
The neural crest is a migratory cell population that contributes to multiple tissues and organs during vertebrate embryonic development. It is remarkable in its ability to differentiate into an array of different cell types, including melanocytes, cartilage, bone, smooth muscle, and peripheral nerves. Although neural crest cells are formed along the entire anterior-posterior axis of the developing embryo, they can be divided into distinct subpopulations based on their axial level of origin. These groups of cells, which include the cranial, vagal, trunk, and sacral neural crest, display varied migratory patterns and contribute to multiple derivatives. While these subpopulations have been shown to be mostly plastic and to differentiate according to environmental cues, differences in their intrinsic potentials have also been identified. For instance, the cranial neural crest is unique in its ability to give rise to cartilage and bone. Here, we examine the molecular features that underlie such developmental restrictions and discuss the hypothesis that distinct gene regulatory networks operate in these subpopulations. We also consider how reconstructing the phylogeny of the trunk and cranial neural crest cells impacts our understanding of vertebrate evolution.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。