This paper reports that the acetylation of lysine epsilon-NH3(+) groups of alpha-amylase--one of the most important hydrolytic enzymes used in industry--produces highly negatively charged variants that are enzymatically active, thermostable, and more resistant than the wild-type enzyme to irreversible inactivation on exposure to denaturing conditions (e.g., 1 h at 90 degrees C in solutions containing 100-mM sodium dodecyl sulfate). Acetylation also protected the enzyme against irreversible inactivation by the neutral surfactant TRITON X-100 (polyethylene glycol p-(1,1,3,3-tetramethylbutyl)phenyl ether), but not by the cationic surfactant, dodecyltrimethylammonium bromide (DTAB). The increased resistance of acetylated alpha-amylase toward inactivation is attributed to the increased net negative charge of alpha-amylase that resulted from the acetylation of lysine ammonium groups (lysine epsilon-NH3(+) --> epsilon-NHCOCH3). Increases in the net negative charge of proteins can decrease the rate of unfolding by anionic surfactants, and can also decrease the rate of protein aggregation. The acetylation of lysine represents a simple, inexpensive method for stabilizing bacterial alpha-amylase against irreversible inactivation in the presence of the anionic and neutral surfactants that are commonly used in industrial applications.
Lysine acetylation can generate highly charged enzymes with increased resistance toward irreversible inactivation.
赖氨酸乙酰化可以产生带高电荷的酶,从而增强其对不可逆失活的抵抗力
阅读:3
作者:Shaw Bryan F, Schneider Gregory F, Bilgiçer Basar, Kaufman George K, Neveu John M, Lane William S, Whitelegge Julian P, Whitesides George M
| 期刊: | Protein Science | 影响因子: | 5.200 |
| 时间: | 2008 | 起止号: | 2008 Aug;17(8):1446-55 |
| doi: | 10.1110/ps.035154.108 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
