Nanoscopy Reveals Heparan Sulfate Clusters as Docking Sites for SARS-CoV-2 Attachment and Entry.

纳米显微镜揭示硫酸乙酰肝素簇是SARS-CoV-2附着和进入的对接位点

阅读:5
作者:Han Sue, Wang Xin, Li Tiansheng, Mohseni Ammar, Kosik Ivan, Chan Chung Yu, López-Muñoz Alberto Domingo, Matthias Jessica, Suddaby Reid, Wang Zhixiong, Jin Albert J, Wurm Christian A, Yewdell Jonathan W, Wu Ling-Gang
Virus entry is thought to involve binding a unique receptor for cell attachment and cytosolic entry. For SARS-CoV-2 underlying the COVID-19 pandemic, angiotensin- converting enzyme 2 (ACE2) is widely assumed as the receptor. Using advanced light microscopy to resolve individual virions and receptors, we found instead that heparan sulfate (HS), not ACE2, mediates SARS-CoV-2 cell-surface attachment and subsequent endocytosis. ACE2 functions only downstream of HS to enable viral genome expression. Instead of binding single HS molecules that electrostatically interact with viral surface proteins weakly, SARS-CoV-2 binds clusters of ∼6-137 HS molecules projecting 60-410 nm above the plasma membrane. These tall, HS-rich clusters, present at about one per 6 μm², act as docking sites for viral attachment. Blocking HS binding with the clinically used HS- binding agent pixantrone strongly inhibited the clinically relevant SARS-CoV-2 Omicron JN.1 subvariant from attaching to and infecting human airway cells. This work establishes a revised entry paradigm in which HS clusters mediate SARS-CoV-2 attachment and endocytosis, with ACE2 acting downstream, thereby identifying HS interactions as a key anti-COVID-19 strategy. This paradigm and its therapeutic implications may apply broadly beyond COVID-19 because, analogous to SARS-CoV-2, HS binds many other viruses but is only considered an attachment regulator. STATEMENT OF SIGNIFICANCE: Viral entry, a crucial antiviral target, is typically thought to involve binding its unique receptor for the cell surface attachment and subsequent entry. We examined this concept with advanced microscopies to resolve individual receptors and SARS-CoV-2 virions responsible for the COVID-19 pandemic. We discovered two receptors for viral entry: heparan sulfate, a polysaccharide that may bind many viruses, mediates viral attachment and subsequent endocytosis, whereas angiotensin-converting enzyme 2 (ACE2), the generally assumed SARS-CoV-2 receptor, acts only downstream to facilitate viral infection. This new model suggests perturbation of HS binding as a more effective anti-COVID-19 strategy than previously recognized. It may apply broadly beyond COVID-19 because, analogous to SARS-CoV-2, HS binds many other viruses but is only considered an attachment regulator.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。