Kynurenine (KYN), a tryptophan metabolite that increases with age, impairs osteoblast function. The aryl hydrocarbon receptor (AhR) has been proposed to mediate KYN's actions in bone. To test whether deletion of AhR in osteoblasts is beneficial for bone, we established an adult-onset AhR conditional knockout (CKO) model using Osx-Cre and examined the effects of AhR CKO at 4.5 and 6Â mo of age (representing ~6 and 12Â wk of CKO). While BMSC-derived osteoblasts from WT mice demonstrated reduced matrix formation from KYN treatment, AhR CKO osteoblasts were unaffected by KYN. Kynurenine's harmful effects were most pronounced in the middle of an osteoblastic differentiation time course, and these effects could be rescued via the AhR antagonist BAY2416964. In vivo, AhR deletion in Osx-expressing cells promoted sex- and compartment-specific skeletal phenotypes. Trabecular bone was increased in the distal femur of male and female AhR CKO mice at both 4.5 and 6 mo of age, potentially driven by a net decrease in the ratio of trabecular osteoclasts to osteoblasts despite a reduction in mineral apposition rate at 6 mo of age. In contrast, cortical bone phenotypes induced by AhR deletion depended on age and sex. In males, cortical bone volume fraction (Ct.BV/TV) was elevated in AhR CKO mice vs WT littermates at 4.5 mo of age, but differences resolved by 6 mo of age. In contrast, cortical bone was reduced in female AhR CKO as compared to WT littermates at 6 mo of age. These results underscore the complexity of AhR signaling in skeletal biology that must be considered while exploring AhR as a therapeutic target for conditions like osteoporosis and musculoskeletal frailty. Future studies will be needed to test the effects of osteoblastic AhR deletion at advanced ages, when the endogenous AhR ligand KYN is elevated in the circulation and skeletal niche.
Expression of the aryl hydrocarbon receptor in Osterix-lineage cells regulates adult skeletal homeostasis in a compartment-specific manner.
Osterix 谱系细胞中芳烃受体的表达以区室特异性的方式调节成年骨骼稳态
阅读:15
作者:Dorn Jennifer, Alhamad Dima W, Bensreti Husam, Yearwood Christopher L, Allen Tate J, Cushing Michaela, Shaver Joseph C, Gross Colby, Whichard William C, Dai Caihong, Yu Kanglun, Zhong Roger, Cooley Marion A, Johnson Maribeth H, Bollag Wendy B, Fulzele Sadanand, Isales Carlos M, Hamrick Mark W, Hill William D, McGee-Lawrence Meghan E
| 期刊: | JBMR Plus | 影响因子: | 2.400 |
| 时间: | 2025 | 起止号: | 2025 Apr 16; 9(6):ziaf067 |
| doi: | 10.1093/jbmrpl/ziaf067 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
