Suppressing bone mesenchymal stem cell (BMSC) ferroptosis is expected to optimize BMSCs-based therapy for intervertebral disc degeneration (IVDD). Our previous study revealed that Prominin-2 could protect against ferroptosis by decreasing cellular Fe(2+) content and inhibiting transcription regulator protein BACH1 (BACH1) expression. In this study we probed the molecular mechanisms underlying the Prominin-2/BACH1 pathway in BMSC ferroptosis. Using an array of in vitro and in vivo experiments we found that heat shock factor protein 1 (HSF1) activates PROM2 (encoding protein Prominin-2) transcription and elevated Prominin-2 expression. Furthermore, we showed that Prominin-2 attenuates ferroptosis induced by tert-butyl hydroperoxide (TBHP) through promoting BACH1 ubiquitination and degradation. Inhibition of BACH1 expression reversed TBHP-stimulated down expression of glutaminase kidney isoform, mitochondrial (GLS), which plays a crucial role in protecting BMSCs against ferroptosis. Targeting the Prominin-2/BACH1 axis has also been shown to improve BMSC survival post-transplantation and mitigate IVDD progression by inhibiting ferroptosis. Our results support a new mechanistic insight into the regulation of the Prominin-2/BACH1/GLS pathway in BMSC ferroptosis. These finding could lead to potential therapeutic targets to improve the survival of engrafted BMSCs under oxidative stress circumstances.
Targeting prominin-2/BACH1/GLS pathway to inhibit oxidative stress-induced ferroptosis of bone mesenchymal stem cells.
靶向 prominin-2/BACH1/GLS 通路抑制氧化应激诱导的骨髓间充质干细胞铁死亡
阅读:3
作者:Xu Yuzhu, Zhang Lele, Xu Xuanfei, Tao Yuao, Xue Pengfei, Wang Yuntao, Chai Renjie, Wu Xiaotao
| 期刊: | Stem Cell Research & Therapy | 影响因子: | 7.300 |
| 时间: | 2025 | 起止号: | 2025 Apr 29; 16(1):213 |
| doi: | 10.1186/s13287-025-04326-1 | 研究方向: | 发育与干细胞、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
