Downregulation of Alox5 Inhibits Ferroptosis to Improve Doxorubicin-Induced Cardiotoxicity via the P53/SLC7A11 Pathway.

Alox5 下调通过 P53/SLC7A11 通路抑制铁死亡,从而改善阿霉素诱导的心脏毒性

阅读:2
作者:Fang Wenxi, Hu Zhefu, Shen Bo, Zeng Xiaofeng, Chen Si, Wang Shasha, Xie Saiyang, Deng Wei
Doxorubicin (DOX) is an anthracycline chemotherapeutic drug used for tumour treatment. Due to DOX-induced cardiotoxicity (DIC), its clinical application has been widely limited. Multiple studies have shown that ferroptosis is involved in the pathogenesis of DIC and that arachidonate 5-lipoxygenase (Alox5) plays an important role in the occurrence and development of ferroptosis. The aim of this study was to provide evidence that silencing Alox5 alleviated DIC by affecting ferroptosis and identify mechanisms. Acute models of DIC were established in wild-type (WT) C57BL/6 and Alox5-deficient (Alox5 KO) mice and neonatal rat ventricular myocytes (NRVMs). Alox5 was upregulated in vivo and in vitro during DIC. Subsequently, we overexpressed the Alox5 gene in adult mice using a recombinant adenovirus expression vector (rAAV9). Compared with that in WT mice, overexpressing Alox5 accelerated DOX-induced myocardial injury and cardiac dysfunction. This finding was also confirmed in vitro. In contrast, silencing the Alox5 gene protected against myocardial injury in the DIC model and reduced ferroptosis and inflammation, and this effect was confirmed in vitro. In addition, transcriptomics and GO enrichment analysis of adult mouse cardiomyocytes showed that Alox5 could ameliorate DIC by inhibiting ferroptosis and inflammation. Moreover, P53 was identified as a target of Alox5. Subsequently, in vivo and in vitro experiments showed that silencing Alox5 could alleviate ferroptosis and inflammation. Further in vivo and in vitro experiments demonstrated that dexrazoxane (DXZ) could ameliorate DIC caused by Alox5 overexpression by alleviating ferroptosis. Mechanistically, silencing Alox5 could reduce reactive oxygen species (ROS) production through the P53/SLC7A11 pathway. Furthermore, P53 inhibitors significantly inhibited the adverse effects of Alox5 overexpression on DIC. The final experiment showed that pharmacological inhibition of Alox5 could prevent DIC in vivo and in vitro. Our study showed that the downregulation of Alox5 alleviated myocardial damage associated with DIC via the P53/SLC7A11 pathway. Therefore, inhibiting Alox5 might be a potential strategy for the treatment of DIC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。