Heat shock factor 2 regulates oncogenic gamma-herpesvirus gene expression by remodeling the chromatin at the ORF50 and BZLF1 promoter.

热休克因子 2 通过重塑 ORF50 和 BZLF1 启动子处的染色质来调节致癌 γ-疱疹病毒基因的表达

阅读:4
作者:Cutrone Lorenza, Djupenström Hedvig, Peltonen Jasmin, Martinez Klimova Elena, Corso Simona, Giordano Silvia, Sistonen Lea, Gramolelli Silvia
The Human gamma-herpesviruses Kaposi's sarcoma herpesvirus (KSHV) and Epstein-Barr virus (EBV) are causally associated to a wide range of cancers. While the default infection program for these viruses is latent, sporadic lytic reactivation supports virus dissemination and oncogenesis. Despite its relevance, the repertoire of host factors governing the transition from latent to lytic phase is not yet complete, leaving much of this complex process unresolved. Here we show that heat shock factor 2 (HSF2), a transcription factor involved in regulation of stress responses and specific cell differentiation processes, promotes gamma-herpesvirus lytic gene expression. In lymphatic endothelial cells infected with KSHV and in gastric cancer cells positive for EBV, ectopic HSF2 enhances the expression of lytic genes; While knocking down HSF2 significantly decreases their expression. HSF2 overexpression is accompanied by decreased levels of repressive histone marks at the promoters of the lytic regulators KSHV ORF50 and EBV BZLF1, both characterized by poised chromatin features. Our results demonstrate that endogenous HSF2 binds to the promoters of KSHV ORF50 and EBV BZLF1 genes and shifts the bivalent chromatin state towards a more transcriptionally permissive state. We detected HSF2 binding to the ORF50 promoter in latent cells, in contrast, in lytic cells, HSF2 occupancy at the ORF50 promoter is lost in conjunction with its proteasomal degradation. These findings identify HSF2 as a regulator of gamma-herpesvirus lytic gene expression in latency and offer new insights on the function of this transcription factors at poised gene promoters, improving our understanding of its role in differentiation and development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。