Reprogramming aerobic metabolism mitigates Streptococcus pyogenes tissue damage in a mouse necrotizing skin infection model.

重编程有氧代谢可减轻小鼠坏死性皮肤感染模型中化脓性链球菌造成的组织损伤

阅读:4
作者:Xu Wei, Bradstreet Tara R, Zou Zongsen, Hickerson Suzanne, Zhou Yuan, He Hongwu, Edelson Brian T, Caparon Michael G
Disease tolerance is a host response to infection that limits collateral damage to host tissues while having a neutral effect on pathogen fitness. Previously, we found that the pathogenic lactic acid bacterium Streptococcus pyogenes manipulates disease tolerance using its aerobic mixed-acid fermentation pathway via the enzyme pyruvate dehydrogenase, but the microbe-derived molecules that mediate communication with the host's disease tolerance pathways remain elusive. Here we show in a murine model that aerobic mixed-acid fermentation inhibits the accumulation of inflammatory cells including neutrophils and macrophages, reduces the immunosuppressive cytokine interleukin-10, and delays bacterial clearance and wound healing. In infected macrophages, the aerobic mixed-acid fermentation end-products acetate and formate from streptococcal upregulate host acetyl-CoA metabolism and reduce interleukin-10 expression. Inhibiting aerobic mixed-acid fermentation using a bacterial-specific pyruvate dehydrogenase inhibitor reduces tissue damage during murine infection, correlating with increased interleukin-10 expression. Our results thus suggest that reprogramming carbon flow provides a therapeutic strategy to mitigate tissue damage during infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。