1,8-Cineole inhibits platelet-leukocyte aggregate formation by reducing P-selectin expression

1,8-桉油素通过降低P-选择素表达来抑制血小板-白细胞聚集体的形成。

阅读:1
作者:Julie Petry ,Han Mai ,Maria Shoykhet ,Ali Bashiri Dezfouli ,Barbara Wollenberg
INTRODUCTION: Platelets, traditionally recognized for their role in hemostasis, have increasingly been implicated in cancer progression, including head and neck squamous cell carcinoma (HNSCC). Beyond releasing growth factors and chemokines, platelets modulate leukocyte-mediated proinflammatory responses and effector functions through direct or indirect contact. These processes promote tumor cell proliferation, survival, epithelial to mesenchymal transition (EMT) and extravasation. Consequently, targeting platelet-leukocyte aggregate (PLA) formation represents a promising pharmacological strategy to interfere with platelet-mediated pro-tumorigenic effects. 1,8-cineole, a plant-derived metabolite found in several botanical sources, has shown potent anti-platelet effects through modulation of the adenosine A(2A) receptor signaling. However, its influence on PLA formation has not been investigated. METHODS: In this study, we analyzed platelet activation and PLA formation in HNSCC patients compared to healthy donors. A co-culture system combined with blocking antibodies was employed to elucidate the mechanisms of PLA formation. Moreover, the pharmacological effects of 1,8-cineole were compared with those of conventional anti-platelet drugs. RESULTS: The results revealed elevated P-selectin expression and enhanced PLA formation in HNSCC patients. PLA formation was predominantly mediated through P-selectin-PSGL-1 interactions. Ex vivo studies demonstrated that 1,8-cineole significantly reduced PLA formation by inhibiting P-selectin expression on platelets. Notably, traditional anti-platelet agents did not significantly inhibit PLA formation, despite effectively reducing platelet aggregation. DISCUSSION: These findings identify a pharmacological effect of 1,8-cineole in disrupting platelet-leukocyte interactions via suppression of the P-selectin-PSGL-1 axis. This suggests that 1,8-cineole offers potential pharmacological benefits in mitigating platelet-mediated inflammation and tumor progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。