Multiplexed assays of variant effect (MAVEs) enable scalable functional assessment of human genetic variants. However, established MAVEs are limited by exogenous expression of variants or constraints of genome editing. Here, we introduce a pooled prime editing (PE) platform to scalably assay variants in their endogenous context. We first improve efficiency of PE in HAP1 cells, defining optimal prime editing guide RNA (pegRNA) designs and establishing enrichment of edited cells via co-selection. We next demonstrate negative selection screening by testing over 7,500 pegRNAs targeting SMARCB1 and observing depletion of efficiently installed loss-of-function (LoF) variants. We then screen for LoF variants in MLH1 via 6-thioguanine selection, testing 65.3% of all possible SNVs in a 200-bp region including exon 10 and 362 non-coding variants from ClinVar spanning a 60-kb region. The platform's overall accuracy for discriminating pathogenic variants indicates that it will be highly valuable for identifying new variants underlying diverse human phenotypes across large genomic regions.
High-throughput screening of human genetic variants by pooled prime editing.
利用混合先导编辑技术对人类遗传变异进行高通量筛选
阅读:3
作者:Herger Michael, Kajba Christina M, Buckley Megan, Cunha Ana, Strom Molly, Findlay Gregory M
| 期刊: | Cell Genomics | 影响因子: | 9.000 |
| 时间: | 2025 | 起止号: | 2025 Apr 9; 5(4):100814 |
| doi: | 10.1016/j.xgen.2025.100814 | 种属: | Human |
| 研究方向: | 其它 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
