The relation between substrate and water transport was studied in Na+-coupled cotransporters of glucose (SGLT1) and of iodide (NIS) expressed in Xenopus oocytes. The water transport was monitored from changes in oocyte volume at a resolution of 20 pl, more than one order of magnitude better than previous investigations. The rate of cotransport was monitored as the clamp current obtained from two-electrode voltage clamp. The high resolution data demonstrated a fixed ratio between the turn-over of the cotransporter and the rate of water transport. This applied to experiments in which the rate of cotransport was changed by isosmotic application of substrate, by rapid changes in clamp voltage, or by poisoning. Transport of larger substrates gave rise to less water transport. For the rabbit SGLT1, 378+/-20 (n=18 oocytes) water molecules were cotransported along with the 2 Na+ ions and the glucose-analogue alpha-MDG (MW 194); using the larger sugar arbutin (MW 272) this number was reduced by a factor of at least 0.86+/-0.03 (15). For the human SGLT1 the respective numbers were 234+/-12 (18) and 0.85+/-0.8 (7). For NIS, 253+/-16 (12) water molecules were cotransported for each 2 Na+ and 1 thiocyanate (SCN-, MW 58), with I- as anion (MW 127) only 162+/-11 (19) water molecules were cotransported. The effect of substrate size suggests a molecular mechanism for water cotransport and is opposite to what would be expected from unstirred layer effects. Data were analysed by a model which combined cotransport and osmosis at the membrane with diffusion in the cytoplasm. The combination of high resolution measurements and precise modelling showed that water transport across the membrane can be explained by cotransport of water in the membrane proteins and that intracellular unstirred layers effects are minute.
Water transport by Na+-coupled cotransporters of glucose (SGLT1) and of iodide (NIS). The dependence of substrate size studied at high resolution.
葡萄糖钠离子偶联转运蛋白(SGLT1)和碘离子钠离子偶联转运蛋白(NIS)介导的水转运高分辨率研究了底物大小对其转运的依赖性
阅读:3
作者:Zeuthen Thomas, Belhage Bo, Zeuthen Emil
| 期刊: | Journal of Physiology-London | 影响因子: | 4.400 |
| 时间: | 2006 | 起止号: | 2006 Feb 1; 570(Pt 3):485-99 |
| doi: | 10.1113/jphysiol.2005.100933 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
