Epigenetic insights into physiological resilience: Multigenerational readouts of CO(2)-induced seawater acidification effects on fish embryos.

表观遗传学对生理恢复力的见解:CO(2) 诱导的海水酸化对鱼类胚胎影响的多代读数

阅读:7
作者:Liu Tzu-Yen, Yan Jia-Jiun, Guh Ying-Jey, Hayasaka Oki, Lin Li-Yih, Hwang Pung-Pung, Wu Guan-Chung, Chung Ming-Tsung, Tseng Yung-Che
Anthropogenic CO(2) emissions are acidifying oceans, threatening marine organisms during early development. We investigated multigenerational effects of projected 2100 acidification (pH 7.6) on marine medaka (Oryzias melastigma) embryos across three generations using integrated phenotypic, physiological, transcriptomic, and epigenetic analyses. Prolonged acidification altered developmental trajectories, with F2 embryos showing size reductions. Metabolic responses were generation-specific: F0 embryos displayed decreased ammonium excretion, while F1 and F2 maintained stable profiles. Transcriptomic analysis revealed generational changes in neurotransmission, ion regulation, and epigenetic pathways. F2 embryos exhibited attenuated transcriptional perturbations and partial restoration of acid-base homeostasis, suggesting enhanced adaptability. Adaptive gene expression correlated with hypomethylation recovery of ion transport genes AE1a and NHE2 in F2 embryos. Increased hypomethylated AE1a promoter CpG sites in F1 and F2 generations aligned with elevated transcription, indicating epigenetically-driven enhancement. These results demonstrate epigenetic control's crucial role in multigenerational plasticity and adaptive responses to ocean acidification.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。