Optochemical control over mRNA translation by photocaged phosphorodiamidate morpholino oligonucleotides in vivo.

利用光笼磷酰二胺吗啉代寡核苷酸在体内对mRNA翻译进行光化学控制

阅读:5
作者:Tarbashevich Katsiaryna, Ghosh Atanu, Das Arnab, Kuilya Debajyoti, Sharma Swrajit Nath, Sinha Surajit, Raz Erez
We developed an efficient, robust, and broadly applicable system for light-induced protein translation to control the production of proteins of interest and study their function. The method is based on the displacement of a single type of antisense morpholino from RNA by the uncaged guanidinium-linked morpholino (GMO)-phosphorodiamidate morpholino oligonucleotide (PMO) chimera upon UV irradiation. The GMO-PMO chimera designed here is cell-permeable and the GMO part can be produced employing a mercury-free approach compatible with the synthesis on solid support. We demonstrate the function of this optochemical approach in live embryos by inducing, at desired times and locations, the expression of proteins that label specific cells, ablate tissue regions, and affect embryonic development. Together, our results demonstrate that the cell-permeable GMO-PMO chimera offers a strategy for controlling the function of mRNAs of interest. This method allows for the production of proteins at specific times and positions within live organisms, facilitating numerous applications in biomedical research and therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。