Palmitoyl-carnitine Regulates Lung Development by Promoting Pulmonary Mesenchyme Proliferation.

棕榈酰肉碱通过促进肺间充质增殖来调节肺发育

阅读:4
作者:Liu Xing, Lam Sin Man, Zheng Yu, Mo Lesong, Li Muhan, Sun Tianyi, Long Xiaohui, Peng Shulin, Zhang Xinwei, Mei Mei, Shui Guanghou, Bao Shilai
Disruption of acylcarnitine homeostasis results in life-threatening outcomes in humans. Carnitine-acylcarnitine translocase deficiency (CACTD) is a scarce autosomal recessive genetic disease and may result in patients' death due to heart arrest or respiratory insufficiency. However, the reasons and mechanism of CACTD inducing respiratory insufficiency have never been elucidated. Herein, we employed lipidomic techniques to create comprehensive lipidomic maps of entire lungs throughout both prenatal and postnatal developmental stages in mice. We found that the acylcarnitines manifested notable variations and coordinated the expression levels of carnitine-acylcarnitine translocase (Cact) across these lung developmental stages. Cact-null mice were all dead with a symptom of respiratory distress and exhibited failed lung development. Loss of Cact resulted in an accumulation of palmitoyl-carnitine (C16-acylcarnitine) in the lungs and promoted the proliferation of mesenchymal progenitor cells. Mesenchymal cells with elevated C16-acylcarnitine levels displayed minimal changes in energy metabolism but, upon investigation, revealed an interaction with sterile alpha motif domain and histidine-aspartate domain-containing protein 1 (Samhd1), leading to decreased protein abundance and enhanced cell proliferation. Thus, our findings present a mechanism addressing respiratory distress in CACTD, offering a valuable reference point for both the elucidation of pathogenesis and the exploration of treatment strategies for neonatal respiratory distress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。