Histone deacetylases repress the accumulation of licochalcone A by inhibiting the expression of flavonoid biosynthetic pathway-related genes in licorice (Glycyrrhiza inflata).

组蛋白去乙酰化酶通过抑制甘草(Glycyrrhiza inflata)中类黄酮生物合成途径相关基因的表达来抑制甘草查尔酮 A 的积累

阅读:16
作者:Zeng Jiangyi, Ma Xiaoling, Li Yuping, Zhou Lijun, Fu Jingxian, Wang Hongxia, Liu Yongliang, Yuan Ling, Wang Ying, Li Yongqing
Histone deacetylases (HDACs) play a crucial role in regulating plant growth, stress responses, and specialized metabolism. Licorice, utilized as both food and herbal medicine for millennia, includes Glycyrrhiza inflata as one of its primary medicinal species used globally. This study investigated the regulatory function of HDAC-mediated histone deacetylation in flavonoid biosynthesis in licorice. The research identified nineteen HDACs in the G. inflata genome. Abiotic stresses and plant hormones were found to influence flavonoid compound accumulation, correlating with altered expression patterns of HDAC genes and global histone H3 acetylation (H3ac) levels. Notably, several HDAC inhibitors enhanced flavonoid accumulation in G. inflata. Subsequent RNA-seq analysis revealed that the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) activated the expression of multiple genes related to flavonoid biosynthesis. ChIP-qPCR demonstrated that SAHA treatment increased the H3ac levels of flavonoid synthesis-related genes. Furthermore, overexpression of GiHDA2b, an HDAC member, decreased, while RNAi of GiHDA2b increased, the levels of expression and H3K18 acetylation of licochalcone A (LCA) biosynthetic genes indicating its negative role in flavonoid biosynthesis. This research provides valuable insights into the regulatory roles of GiHDACs and histone deacetylation in flavonoid biosynthesis in licorice, potentially contributing to improved bioactive compound production in medicinal plants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。