Pulmonary fibrosis (PF) is a disease characterized by dysregulated extracellular matrix deposition and aberrant fibroblast activation. Emerging evidence implicates that dysregulated copper metabolism contributed to fibrotic pathogenesis, yet its role and the therapeutic potential of copper modulation remain underexplored. This study investigated the involvement of cuproptosis, a programmed cell death induced by intracellular copper overload, in PF and evaluated the therapeutic efficacy of the copper chelator tetrathiomolybdate (TTM). In a bleomycin (BLM)-induced murine PF model, intratracheal BLM administration elevated lung copper levels, upregulated oligomerized DLAT, and exacerbated fibrosis, as evidenced by collagen deposition, α-smooth muscle actin, and transforming growth factor-beta expression. TTM treatment significantly attenuated fibrotic progression, reduced oxidative stress, and suppressed Olig-DLAT accumulation. In vitro, copper ionophores induced cuproptosis in bronchial epithelial cells, characterized by reduced viability, elevated intracellular Cuâº, and Olig-DLAT aggregation, which were reversed by TTM. Furthermore, TTM mitigated TGF-β-driven epithelial-mesenchymal transition (EMT) and fibroblast-to-myofibroblast transition (FMT), downregulating collagen-1 and restoring E-cadherin expression. These findings establish cuproptosis as a novel mechanistic contributor to PF and highlight TTM's dual role in restoring copper homeostasis and inhibiting fibrogenic pathways, offering a promising therapeutic strategy for fibrotic lung diseases.
Tetrathiomolybdate alleviates bleomycin-induced pulmonary fibrosis by reducing copper concentration and suppressing EMT.
四硫钼酸盐通过降低铜浓度和抑制 EMT 来缓解博来霉素引起的肺纤维化
阅读:4
作者:Wang Yajun, Chen Shuyang, Zhou Zheng, Jiang Jinjun, Chen Shujing
| 期刊: | European Journal of Medical Research | 影响因子: | 3.400 |
| 时间: | 2025 | 起止号: | 2025 May 19; 30(1):394 |
| doi: | 10.1186/s40001-025-02640-1 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
