Heme-regulated inhibitor (HRI) is one of the four mammalian kinases that phosphorylate eIF2α, facilitating a cellular response to stress through the regulation of mRNA translation. Originally identified as a heme sensor in erythroid progenitor cells, HRI has since emerged as a potential therapeutic target in both cancer and neurodegeneration. Here, we characterise two modes of HRI inhibition using structural mass spectrometry, biochemistry, and biophysics. We examined several competitive ATP-mimetic inhibitors - dabrafenib, encorafenib, and GCN2iB - and compared them with the heme-mimetic allosteric inhibitor, hemin. By combining hydrogen-deuterium exchange mass spectrometry with protein models generated by AlphaFold 3, we investigated the structural basis of inhibition by dabrafenib and hemin. Our analysis revealed that hemin inhibition induces large-scale structural rearrangements in HRI, which are not observed with ATP-mimetic inhibitors. Our results suggest that HRI may be inhibited using two distinctly different modalities, which may guide future drug development.
Structural insights into allosteric inhibition of HRI kinase by heme binding via HDX-MS.
通过HDX-MS对血红素结合变构抑制HRI激酶的结构进行深入研究
阅读:7
作者:Kanta Shivani, Vinciauskaite Vanesa, Neill Graham, Muqit Miratul M K, Masson Glenn R
| 期刊: | Biochemical Journal | 影响因子: | 4.300 |
| 时间: | 2025 | 起止号: | 2025 Jun 17; 482(12):859-75 |
| doi: | 10.1042/BCJ20253072 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
