PDE7A inhibition suppresses triple-negative breast cancer by attenuating de novo pyrimidine biosynthesis.

PDE7A抑制剂通过减弱嘧啶从头合成来抑制三阴性乳腺癌

阅读:3
作者:Malvi Parmanand, Bugide Suresh, Dutta Roshan, Reddi Kiran Kumar, Edwards Yvonne J K, Singh Kamaljeet, Gupta Romi, Wajapeyee Narendra
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer, associated with poor response to therapies and high mortality. We identify that phosphodiesterase 7A (PDE7A) is overexpressed in the majority of TNBCs, and a higher level of PDE7A associates with poor prognosis. The phosphatidylinositol 3-kinase (PI3K)/AKT pathway, via the transcription factor IRF1, stimulates the expression of PDE7A in TNBC cells. PDE7A inhibition attenuates TNBC growth in both cell culture and mouse models of TNBC. Inhibition of PDE7A suppresses de novo pyrimidine biosynthesis, in part through the downregulation of the enzyme dihydroorotate dehydrogenase (DHODH). DHODH suppression attenuates TNBC tumor growth, mirroring the effects of PDE7A inhibition, and ectopic DHODH expression rescues PDE7A-inhibition-induced tumor suppression. Pharmacological co-targeting of PDE7A and DHODH potently inhibits TNBC tumor growth and metastasis. These findings identify the PDE7A → DHODH →de novo pyrimidine biosynthesis pathway as a key driver of TNBC, offering additional therapeutic opportunities for TNBC patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。