Global knockout (KO) of the Lrrk1 gene in mice causes severe osteopetrosis because of the failure of osteoclasts to resorb bone. The molecular mechanism of LRRK1 regulation of osteoclast function is not fully understood. Here, we performed a 2D DIGE phosphor-proteomics analysis to identify potential LRRK1 targets in osteoclasts. Splenocytes from Lrrk1 KO and wild-type (WT) mice were differentiated into osteoclasts for protein extraction. Lysates from Lrrk1 KO and WT cells were labeled with Cy3- and Cy5-dye, respectively. Labeled proteins were mixed and analyzed on the same 2D SDS PAGE for protein profiling. The same amounts of cellular protein were also labeled with Cy3-dye and ran on a 2D SDS PAGE. The gels were then stained using Pro-Q(®) Diamond Phosphoprotein Gel Stain for phosphoprotein profiling. Differentially phosphorylated protein spots between the two types of cells were collected, digested with trypsin, and identified by mass spectrometry. Seventeen phosphoproteins were identified, six of which are known to be involved in endosome/lysosome sorting, vacuolar protection, and trafficking. While five of these proteins (SNX2, VPS35, VTA1, CFL1, and CTSA) were significantly hypophosphorylated, SNX3 was hyperphosphorylated in LRRK1-deficient osteoclasts. The downregulation of VSP35 and CFL1 phosphorylation in LRRK1-deficient cells was validated by Phos-tag SDS PAGE analysis. Our results indicate that LRRK1 signaling regulates osteoclast function via modulating VPS35 and CFL1 phosphorylation critical for endosome/lysosome trafficking and dynamic cytoskeleton arrangement in osteoclasts.
Leucine-Rich Repeat Kinase 1 Signaling Targets Proteins Critical for Endosome/Lysosome Sorting and Trafficking in Osteoclasts.
富含亮氨酸重复激酶 1 信号通路靶向破骨细胞内体/溶酶体分选和运输的关键蛋白
阅读:3
作者:Xing Weirong, Chen Yian, Udayakumar Anakha, Zhao Haibo, Mohan Subburaman
| 期刊: | Biology-Basel | 影响因子: | 3.500 |
| 时间: | 2025 | 起止号: | 2025 Mar 24; 14(4):326 |
| doi: | 10.3390/biology14040326 | 研究方向: | 信号转导、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
