BACKGROUND: Necrotizing enterocolitis (NEC) is a rapidly progressive and severe gastrointestinal disorder in neonates that is marked by an inflammatory cascade initiated by mechanisms that remain incompletely understood, resulting in intestinal necrosis and systemic infections. This study demonstrated that itaconate (ITA) exerts a protective effect in NEC by regulating macrophage reprogramming. METHODS: Changes in ITA expression were investigated using immunofluorescence staining and liquid chromatography-mass spectrometry, and their effect on immune cell differentiation was verified through single-cell sequencing. In vivo experiments were performed using ACOD1(-/-) and ACOD1(fl/fl)LysM(cre) NEC mouse models. RESULTS: We detected changes in ITA expression in clinical NEC samples and confirmed the effect of these changes on immune cell differentiation. In vivo experiments confirmed the therapeutic role of ITA in regulating macrophage differentiation in NEC, and we further investigated the mechanism by which ITA regulates macrophage metabolic reprogramming. The depletion of ITA in NEC correlates with an increased frequency of pro-inflammatory macrophage polarization, thereby exacerbating intestinal inflammatory injury. Importantly, our in vivo experiments revealed that treatment with 4-octyl itaconate (4OI) significantly mitigated intestinal symptoms associated with NEC in murine models. Mechanistic investigations showed that 4OI effectively suppressed M1 macrophage polarization by rescuing mitochondrial function and upregulating oxidative phosphorylation in macrophages. CONCLUSIONS: Our results highlight ITA as a metabolic checkpoint of macrophage differentiation in NEC and suggest the therapeutic efficacy of 4OI in NEC. KEY POINTS: Itaconate alleviates NEC by reprogramming M1 macrophage metabolism ACOD1 deficiency exacerbates NEC severity 4OI maintains intestinal barrier integrity. 4OI rescues NEC by regulating macrophage mitochondrial activity.
Itaconate suppresses neonatal intestinal inflammation via metabolic reprogramming of M1 macrophage.
衣康酸通过M1巨噬细胞的代谢重编程抑制新生儿肠道炎症
阅读:3
作者:Huangfu Shuchen, Lan Chaoting, Li Sitao, Wang Huijuan, Yan Chun, Yang Yuling, Tian Bowen, Mu Yide, Zhao Peizhi, Tian Yan, Wang Yijia, Zhong Wei, Zhong Limei, Shi Yongyan, Liu Yufeng
| 期刊: | Clinical and Translational Medicine | 影响因子: | 6.800 |
| 时间: | 2025 | 起止号: | 2025 Jul;15(7):e70419 |
| doi: | 10.1002/ctm2.70419 | 研究方向: | 代谢、细胞生物学 |
| 疾病类型: | 肠炎 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
