Numerous illnesses, including neurological and mental disorders, have been associated with mitochondrial dysfunction. Disruptions in mitochondrial respiration and energy production have been linked to dysmetabolism of the tryptophan (Trp)-kynurenine (KYN) pathway, which produces a diverse array of bioactive metabolites. Kynurenic acid (KYNA) is a putative neuroprotectant. The exact mechanisms through which Trp-KYN metabolic dysregulation affects mitochondrial function remain largely unclear. This study investigates the impact of the genetic deletion of kynurenine aminotransferase (KAT) enzymes, which are responsible for KYNA synthesis, on mitochondrial function, specifically mitochondrial respiration and ATP synthesis, and its potential role in neuropsychiatric pathology. CRISPR/Cas9-induced knockout mouse strains kat1(-/-), kat2(-/-), and kat3(-/-) were generated. Eight-to-ten-week-old male mice were used, and cerebral and hepatic respiration, complex I- and II-linked oxidative phosphorylation (CI and CII OXPHOS), and complex IV (CIV) activity were measured using high-resolution respirometry. Mitochondrial membrane potential changes were measured with Fluorescence-Sensor Blue and safranin dye. KAT knockout mice exhibited significantly lower cerebellar respiration (CI OXPHOS, CII OXPHOS, and CIV activity) compared to wild-type mice. Lower baseline respiration and attenuated OXPHOS activities were observed in the hippocampus and striatum, particularly in kat2(-/-) and kat3(-/-) mice. Non-neuronal tissues showed reduced CIV activity, while ADP-stimulated CI and CII OXPHOS remained unchanged. The deletion of the KAT genes significantly impairs mitochondrial respiration and ATP synthesis, potentially contributing to pathogenesis. This study highlights the importance of KYNA in mitochondrial function, offering new insights into potential therapeutic targets for various disorders. Targeting the KYN pathway could mitigate mitochondrial dysfunction in a variety of diseased conditions.
The Power Struggle: Kynurenine Pathway Enzyme Knockouts and Brain Mitochondrial Respiration.
权力斗争:犬尿氨酸途径酶敲除与脑线粒体呼吸
阅读:5
作者:Juhász László, Spisák Krisztina, Szolnoki Boglárka Zsuzsa, Nászai Anna, Szabó Ãgnes, Rutai Attila, Tallósy Szabolcs Péter, Szabó Andrea, Toldi József, Tanaka Masaru, Takeda Keiko, Ozaki Kinuyo, Inoue Hiromi, Yamamoto Sayo, Ono Etsuro, Boros Mihály, Kaszaki József, Vécsei László
| 期刊: | Journal of Neurochemistry | 影响因子: | 4.000 |
| 时间: | 2025 | 起止号: | 2025 May;169(5):e70075 |
| doi: | 10.1111/jnc.70075 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
