BACKGROUND: In the pediatric cancer neuroblastoma (NB), patients are stratified into low, intermediate or high-risk subsets based in part on MYCN amplification status. While MYCN amplification in general predicts unfavorable outcome, no clinical or genomic factors have been identified that predict outcome within these cohorts of high-risk patients. In particular, it is currently not possible at diagnosis to determine which high-risk neuroblastoma patients will ultimately fail upfront therapy. EXPERIMENTAL DESIGN: We analyzed the prognostic potential of most published gene expression signatures for NB and developed a new prognostic signature to predict outcome for patients with MYCN amplification. Network and pathway analyses identified candidate therapeutic targets for this MYCN-amplified patient subset with poor outcome. RESULTS: Most signatures have a high capacity to predict outcome of unselected NB patients. However, the majority of published signatures, as well as most randomly generated signatures, are highly confounded by MYCN amplification, and fail to predict outcome in subpopulations of high-risk patients with MYCN-amplified NB. We identify a MYCN module signature that predicts patient outcome for those with MYCN-amplified tumors, that also predicts potential tractable therapeutic signaling pathways and targets including the DNA repair enzyme Poly [ADP-ribose] polymerase 1 (PARP1). CONCLUSION: Many prognostic signatures for NB are confounded by MYCN amplification and fail to predict outcome for the subset of high-risk patients with MYCN amplification. We report a MYCN module signature that is associated with distinct patient outcomes, and predicts candidate therapeutic targets in DNA repair pathways, including PARP1 in MYCN-amplified NB.
Transcript signatures that predict outcome and identify targetable pathways in MYCN-amplified neuroblastoma.
预测 MYCN 扩增神经母细胞瘤预后并识别可靶向通路转录特征
阅读:3
作者:Hallett Robin M, Seong Alex B K, Kaplan David R, Irwin Meredith S
| 期刊: | Molecular Oncology | 影响因子: | 4.500 |
| 时间: | 2016 | 起止号: | 2016 Nov;10(9):1461-1472 |
| doi: | 10.1016/j.molonc.2016.07.012 | 研究方向: | 神经科学、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
