Oxidized LDL stimulates PKM2-mediated mtROS production and phagocytosis.

氧化型低密度脂蛋白刺激 PKM2 介导的线粒体活性氧产生和吞噬作用

阅读:5
作者:Zhang Jue, Chang Jackie, Chen Vaya, Beg Mirza Ahmar, Huang Wenxin, Vick Lance, Wang Yaxin, Zhang Heng, Yttre Erin, Gupta Ankan, Castleberry Mark, Zhang Ziyu, Dai Wen, Zhu Jieqing, Song Shan, Yang Moua, Brown Ashley Kaye, Xu Zhen, Ma Yan-Qing, Smith Brian C, Zielonka Jacek, Traylor James G Jr, Ben Dhaou Cyrine, Orr A Wayne, Cui Weiguo, Chen Yiliang
Oxidized low-density lipoprotein (oxLDL) promotes proatherogenic phenotypes in macrophages, accelerating the progression of atherosclerosis. Our previous studies demonstrated that oxLDL binds to its receptor CD36, stimulating mitochondrial reactive oxygen species (mtROS), which are critical in atherosclerosis development. However, the mechanisms underlying mtROS induction and their effects on macrophage cellular functions remain poorly understood. Macrophages rely on phagocytosis to clear pathogens, apoptotic cells, or other particles, a process critical for tissue homeostasis. Dysregulated or excessive particle ingestion, a key step in phagocytosis, can lead to lipid overloading and foam cell formation, a hallmark of atherosclerosis. In this study, we showed that macrophages pretreated with oxLDL exhibit increased particle ingestion, a phagocytic response significantly attenuated in Cd36-null macrophages. Further investigations revealed that oxLDL-induced phagocytosis depends on mtROS, as their suppression inhibited the process. In vivo, atherosclerosis-prone Apoe-null mice on a high-fat diet exhibited increased mtROS levels and enhanced phagocytic activity in aortic foamy macrophages compared to those from chow diet-fed mice, supporting a role of mtROS in promoting lesional macrophage phagocytosis. Mechanistically, we identified a novel signaling pathway whereby oxLDL/CD36 interaction induces the translocation of the cytosolic enzyme pyruvate kinase muscle 2 (PKM2) to mitochondria. Disruption of PKM2 mitochondrial translocation using siRNA knockdown or a specific chemical inhibitor reduced mtROS production and attenuated oxLDL-induced phagocytosis. In conclusion, our findings reveal a novel oxLDL-CD36-PKM2 signaling axis that drives mtROS production and phagocytosis in atherogenic macrophages.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。