MicroRNAs, a class of small non-coding RNA molecules that regulate gene expression post-transcriptionally, are implicated in various pathological conditions including diabetes mellitus (DM). DM has been increasingly recognized as an inflammatory disease and monocytes play a key role in propagating inflammation under hyperglycemic conditions. We hypothesize that high glucose dysregulates microRNAs to promote monocyte inflammatory activity, which may contribute to the pathogenesis of DM. THP-1 monocytes were cultured in normal (5Â mM) and high (25Â mM) glucose conditions. RT-qPCR and Western blotting were performed to assay microRNAs and proteins, respectively. Monocytes were transfected with microRNA mimics using Lipofectamine RNAiMAX reagent. THP-1 monocyte growth was assessed using Calcein-AM dye and a Boyden chamber assay was applied to measure monocyte migration. The results showed that high glucose downregulated miR-139-5p associated with increased protein expression of CXCR4, an experimentally validated target of miR-139-5p. Correspondingly, treatment with high glucose resulted in a significant increase in THP-1 cell migration towards SDF-1, a cognate ligand for CXCR4. MiR-139-5p overexpression inhibited high glucose-induced CXCR4 expression, leading to reduced cell migration towards SDF-1. High glucose did not affect THP-1 monocyte growth. In conclusion, the miR-139-5p-CXCR4 axis may play a role in high glucose-induced inflammation by regulating monocyte migration.
The MiR-139-5p and CXCR4 axis may play a role in high glucose-induced inflammation by regulating monocyte migration.
miR-139-5p 和 CXCR4 轴可能通过调节单核细胞迁移在高葡萄糖诱导的炎症中发挥作用
阅读:5
作者:Li Weifang, Xu Gengchen, Chai Gregory W, Ball Alexander, Zhang Qiuwang, Kutryk Michael J B
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Feb 25; 15(1):6738 |
| doi: | 10.1038/s41598-025-91100-1 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
