Mechanism of lapatinib-mediated radiosensitization of breast cancer cells is primarily by inhibition of the Raf>MEK>ERK mitogen-activated protein kinase cascade and radiosensitization of lapatinib-resistant cells restored by direct inhibition of MEK.

拉帕替尼介导的乳腺癌细胞放射增敏机制主要是通过抑制 Raf>MEK>ERK 丝裂原活化蛋白激酶级联反应,而拉帕替尼耐药细胞的放射增敏作用则通过直接抑制 MEK 来恢复

阅读:5
作者:Sambade Maria J, Camp J Terese, Kimple Randall J, Sartor Carolyn I, Shields Janiel M
BACKGROUND AND PURPOSE: We recently showed that lapatinib, an EGFR/HER2 inhibitor, radiosensitized breast cancer cells of the basal and HER2+ subtypes. The purpose of this study was to identify the downstream signaling pathways responsible for lapatinib-mediated radiosensitization in breast cancer. MATERIALS AND METHODS: Response of EGFR downstream signaling pathways was assessed by Western blot and clonogenic cell survival assays in breast tumor cells after irradiation (5Gy), lapatinib, CI-1040, or combined treatment. RESULTS: In SUM102 cells, an EGFR+ basal breast cancer cell line, exposure to ionizing radiation elicited strong activation of ERK1/2 and JNK, which was blocked by lapatinib, and weak/no activation of p38, AKT or STAT3. Direct inhibition of MEK1 with CI-1040 resulted in 95% inhibition of surviving colonies when combined with radiation while inhibition of JNK with SP600125 had no effect. Lapatinib-mediated radiosensitization of SUM102 cells was completely abrogated with expression of constitutively active Raf. Treatment of lapatinib-resistant SUM185 cells with CI-1040 restored radiosensitization with 45% fewer surviving colonies when combined with radiation. CONCLUSIONS: These data suggest that radiosensitization by lapatinib is mediated largely through inhibition of MEK/ERK and that direct inhibition of this pathway may provide an additional avenue of radiosensitization in EGFR+ or HER2+ breast cancers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。