Targeting Replication Fork Processing Synergizes with PARP Inhibition to Potentiate Lethality in Homologous Recombination Proficient Ovarian Cancers.

靶向复制叉加工与 PARP 抑制协同作用,可增强同源重组能力强的卵巢癌的致死率

阅读:4
作者:Pai Bellare Ganesh, Kundu Kshama, Dey Papiya, Philip Krupa Thankam, Chauhan Nitish, Sharma Muskan, Rajput Sankarsingh Kesharsingh, Patro Birija Sankar
Synthetic lethality in homologous recombination (HR)-deficient cancers caused by Poly (ADP-ribose) polymerase inhibitors (PARPi) has been classically attributed to its role in DNA repair. The mode of action of PARPi and resistance thereof are now believed to be predominantly replication associated. Therefore, effective combinatorial approaches of targeting replication fork processing along with HR-downregulation to target HR-proficient and possibly PARPi-resistant tumors are warranted. Stilbenes are a privileged class of molecules, which include resveratrol, pterostilbene, piceatannol, etc, that modulate both replication processes and RAD51-expression. In this investigation, by screening a small library of stilbenes, including in-house synthesized molecules, trans-4,4'-dihydroxystilbene (DHS) was discovered as a potent natural agent, which downregulates RAD51 expression and HR repair (GFP-reporter assay). DHS induces extensive synergistic cell death in ovarian cancers when combined with talazoparib (PARPi). Mechanistically, DHS elicits replication-stress through severely impeding replication fork progress, speed, and inducing fork-asymmetry. This leads to robust induction of single stranded DNA (ssDNA) gaps and poly-ADP-ribosylation (PARylation) in S-phase cells, signifying issues related to lagging (Okazaki) strand synthesis. PARPi, which abrogates PARylation, potentiates DHS induced ssDNA gaps, and their conversion into lethal double strand breaks through MRE11 action. Furthermore, the combination is highly effective in mitigating ovarian tumor xenograft growth in SCID mice and exhibited a good therapeutic-index with no/minimal tissue-toxicity.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。