Xanthine Derivative KMUP-3 Alleviates Periodontal Bone Resorption by Inhibiting Osteoclastogenesis and Macrophage Pyroptosis.

黄嘌呤衍生物 KMUP-3 通过抑制破骨细胞生成和巨噬细胞焦亡来缓解牙周骨吸收

阅读:7
作者:Huang Shang-En, Hu Kai-Fang, Lin Meng-Xuan, Tseng Ching-Jiunn, Wu Bin-Nan, Dai Zen-Kong, Hsu Jong-Hau, Yeh Jwu-Lai
AIM: This study investigated the function effects of KMUP-3, a self-developed synthetic xanthine-based derivative, in suppressing Porphyromonas gingivalis (Pg-LPS)-aggravated osteoclastogenesis and pyroptosis as a potential treatment for periodontitis. METHODS: In vitro, the effects of Pg-LPS and KMUP-3 on osteoclast formation and macrophage pyroptosis were investigated using the receptor activator of nuclear factor-κB ligand (RANKL)-primed RAW264.7 macrophages. In vivo, the therapeutic effects of KMUP-3 were evaluated in a model of experimental periodontitis induced by gingival ligature placement. RESULTS: We reveal that KMUP-3 suppressed osteoclastogenesis, inducible nitric oxide synthase activation, and reduced nitric oxide production enhanced by Pg-LPS in RANKL-primed RAW264.7 cells while also decreasing TLR4/NF-κB p65 pathway activation and decreased pro-inflammatory cytokine production; moreover, Pg-LPS promoted NLRP3 activation and exacerbated pyroptosis induction effects that were abolished by KMUP-3. Finally, KMUP-3 ameliorated alveolar bone loss and IL-1β levels in the gingival crevicular fluid in the rat ligature periodontitis model. CONCLUSIONS: Our study demonstrated that KMUP-3 attenuates Pg-LPS-enhanced osteoclastogenesis and macrophage pyroptosis. Notably, KMUP-3 alleviates alveolar bone loss in experimental periodontitis rats and thus suggests its certain role in safeguarding against periodontal bone resorption.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。